Causes a thread to wait for the specified condition variable to be signaled or broadcast.
1 – C Binding
#include <pthread.h> int pthread_cond_wait ( pthread_cond_t *cond, pthread_mutex_t *mutex);
2 – Arguments
cond Condition variable that the calling thread waits on. mutex Mutex associated with the condition variable specified in cond.
3 – Description
This routine causes a thread to wait for the specified condition variable to be signaled or broadcast. Each condition corresponds to one or more Boolean relations, called a predicate, based on shared data. The calling thread waits for the data to reach a particular state for the predicate to become true. However, the return from this routine does not imply anything about the value of the predicate and it should be reevaluated upon return. Call this routine after you have locked the mutex specified in mutex. The results of this routine are unpredictable if this routine is called without first locking the mutex. This routine atomically releases the mutex and causes the calling thread to wait on the condition. When the thread regains control after calling pthread_cond_wait(), the mutex is locked and the thread is the owner. This is true regardless of why the wait ended. If general cancelability is enabled, the thread reacquires the mutex (blocking for it if necessary) before the cleanup handlers are run (or before the exception is raised). A thread that changes the state of storage protected by the mutex in such a way that a predicate associated with a condition variable might now be true, must call either pthread_cond_ signal() or pthread_cond_broadcast() for that condition variable. If neither call is made, any thread waiting on the condition variable continues to wait. This routine might (with low probability) return when the condition variable has not been signaled or broadcast. When this occurs, the mutex is reacquired before the routine returns. To handle this type of situation, enclose each call to this routine in a loop that checks the predicate. The loop provides documentation of your intent and protects against these spurious wakeups, while also allowing correct behavior even if another thread consumes the desired state before the awakened thread runs. It is illegal for threads to wait on the same condition variable by specifying different mutexes. The only routines that are supported for use with asynchronous cancelability enabled are those that disable asynchronous cancelability.
4 – Return Values
If an error condition occurs, this routine returns an integer value indicating the type of error. Possible return values are as follows: Return Description 0 Successful completion. [EINVAL] The value specified by cond or mutex is invalid, or Different mutexes are supplied for concurrent pthread_cond_wait() or pthread_cond_timedwait() operations on the same condition variable, or The mutex was not owned by the calling thread at the time of the call. [ENOMEM] The Threads Library cannot acquire memory needed to block using a statically initialized condition variable.
5 – Associated Routines
pthread_cond_broadcast() pthread_cond_destroy() pthread_cond_init() pthread_cond_signal() pthread_cond_timedwait()