SQL lets you declare host language variables directly or by calling the Ada package, SQL_STANDARD. You must use the SQL_STANDARD package if you want to conform to the ANSI/ISO SQL standard. This package defines the data types that are supported by the ANSI/ISO SQL standard. To use the package, first copy the file SYS$COMMON:[SYSLIB]SQL$STANDARD.ADA to your own Ada library, and then compile the package. The package SQL_STANDARD declares the following ANSI-standard data types: o CHAR o SMALLINT The data type SMALLINT contains one subtype: INDICATOR_TYPE. o INT o REAL o DOUBLE_PRECISION o SQLCODE_TYPE The data type SQLCODE_TYPE contains two subtypes: NOT_FOUND and SQL_ERROR. o SQLSTATE_TYPE If ANSI/ISO SQL compliance is not important for your application, you can declare host language variables directly. The following list describes the variable declaration syntax that the SQL precompiler supports in Ada: o Standard package data types - STRING - CHARACTER - SHORT_SHORT_INTEGER - SHORT_INTEGER - INTEGER - FLOAT By default, Ada recognizes the FLOAT data type as an F- floating representation of floating-point data. However, Ada also allows you to override the default and specify that FLOAT denotes an IEEE S-Floating representation by using the FLOAT_REPRESENTATION(IEEE_FLOAT) pragma or using ACS CREATE LIBRARY or SET PRAGMA commands. This default can also be overridden at installation time. SQL does not recognize whether or not you override the F-floating default for the FLOAT data type. If you do override the FLOAT default, you will get Ada compile-time errors. These compile-time errors can be overcome by using a /FLOAT=IEEE_ FLOAT qualifier with the SQL$PRE command. To avoid problems with the ambiguity in the FLOAT data type, use the SYSTEM package F_FLOAT and IEEE_SINGLE_FLOAT data types. - LONG_FLOAT By default, Ada recognizes the LONG_FLOAT data type as a G-floating representation of floating-point data. However, Ada also allows you to override the default and specify that LONG_FLOAT denotes an IEEE S-Floating representation by using the FLOAT_REPRESENTATION(IEEE_FLOAT) pragma or using ACS CREATE LIBRARY or SET PRAGMA commands. This default can also be overridden at installation time. In addition, if the FLOAT_REPRESENTATION is VAX_FLOAT (the default), Ada allows you to specify that the LONG_ FLOAT data type be represented by a D-Floating format by specifying the LONG_FLOAT(D_FLOAT) pragma. SQL does not recognize whether or not you override the G-floating default for the LONG_FLOAT data type. If you do override the LONG_FLOAT default, you will get Ada compile-time errors. These compile-time errors can be overcome by using a /FLOAT qualifier with the SQL$PRE command to specify either D_FLOATING or IEEE_FLOATING as appropriate. To avoid problems with the ambiguity in the LONG_FLOAT data type, use the SYSTEM package G_FLOAT, D_FLOAT, and IEEE_ DOUBLE_FLOAT data types. NOTE SQL$PRE will issue a warning (%SQL-W-NOFLOAT) if you use a /FLOAT qualifier with an /ADA qualifier because the ADA command does not have a /FLOAT qualifier. But if you use a pragma FLOAT REPRESENTATION to override the default floating point formats you must use the /FLOAT qualifier to let SQL$PRE know about this floating point format since it does not recognize the pragma. Simply ignore the warning. In addition to supporting IEEE formats, SQL$PRE allows the default G_FLOAT format for 64-bit floating point types to be overridden using a combination of the pragma FLOAT REPRESENTATION specifying VAX_FLOAT and the pragma LONG FLOAT specifying D_FLOAT. To use this combination, specify an SQL$PRE qualifier of /FLOAT=D_ FLOAT. The following example shows an Ada program with embedded SQL that will work correctly with SQL$PRE/ADA/FLOAT=IEEE: PRAGMA FLOAT REPRESENTATION IEEE_FLOAT; WITH SYSTEM; USE SYSTEM; WITH STANDARD; USE STANDARD; WITH SQL_STANDARD; USE SQL_STANDARD; . . . PROCEDURE TESTIT IS EXEC SQL BEGIN DECLARE SECTION; KEYFIELD : STRING(1..10); FLOATER : LONG_FLOAT; -- package STANDARD SQLFLOATER : REAL; -- package SQL_STANDARD GFLOATER : G_FLOAT; -- package SYSTEM SFLOATER : IEEE_SINGLE_FLOAT; -- package SYSTEM TFLOATER : IEEE_DOUBLE_FLOAT; -- package SYSTEM EXEC SQL END DECLARE SECTION; . . . BEGIN . . . KEYFIELD := "1.0 "; EXEC SQL SELECT FLOAT1, FLOAT2 INTO :SQLFLOATER, :GFLOATER WHERE KEYFIELD = :KEYFIELD; . . . KEYFIELD := "2.0 "; EXEC SQL SELECT FLOAT1, FLOAT2 INTO :SFLOATER, :TFLOATER WHERE KEYFIELD = "KEYFIELD; . . . KEYFIELD := "3.0 "; EXEC SQL SELECT FLOAT1, FLOAT2 INTO :FLOATER, TFLOATER WHERE KEYFIELD = KEYFIELD; o Date-time data types The precompiler translates lines in a precompiled program that contain any of the date-time data types. NOTE Oracle Rdb reserves the right to change the code generated in translation of date-time data types at any time, without prior notice. - SQL_DATE, SQL_DATE_ANSI, SQL_DATE_VMS - SQL_TIME, SQL_TIMESTAMP - SQL_INTERVAL (DAY TO SECOND) Use this data type for variables that represent the difference between two dates or times. (Precompiler Date- Time Data Mapping lists all the supported INTERVAL data types.) o SQL definition package The precompiler generates a package that includes definitions for the following data types if Ada object declarations refer to them: - SQL_VARCHAR_n Use this data type for variables that correspond to VARCHAR and LONG VARCHAR columns in a database, where n is the length specified in the definition of the columns (always 16,383 characters for LONG VARCHAR columns). SQL declares a two-field Ada record when it encounters SQL_VARCHAR_n, with one field, t, containing the character string, and the second field, l, containing an integer denoting the length of the string. You can refer to the l field to determine the actual length of a varying character string, and refer to the t field to refer to the string itself. This excerpt from the online sample program sql_all_datatypes.sqlada refers to the l field to see if the value in an SQL_VARCHAR_n field is null. . . . -- Variables for main program use type ALL_DATATYPES_RECORD_TYPE IS record . . . VARCHAR_VAR : sql_varchar_40; end record; . . . -- The following if statements evaluate the contents of main variables -- and then set indicators as appropriate. . . . if all_datatypes_record.varchar_var.l = 0 then indicator_group(7) := -1; end if; - SQLDA_ACCESS Specifying this data type declares an SQLDA structure. It offers an advantage over an embedded INCLUDE SQLDA statement because you can use it in more than one declaration to declare multiple SQLDA structures. o CDD_TYPES package data types (must specify WITH CDD_TYPES) - DATE_TIME_DATATYPE (Oracle Rdb recommends that you use SQL_TIMESTAMP) - SHORT_INTEGER_ARRAY (for indicator arrays only) o SYSTEM package data types (must specify WITH SYSTEM) - D_FLOAT - G_FLOAT - F_FLOAT - IEEE_SINGLE_FLOAT - IEEE_DOUBLE_FLOAT o Arrays Single-dimension arrays are supported to declare an indicator array to refer to a structure in SQL statements. The elements of the array must be declared as word integers (SHORT_ INTEGER). Character arrays are supported as types or subtypes but cannot refer to derived types. SQL does not allow references to unconstrained arrays. o Types The precompiler recognizes types for all the preceding data types plus records, derived types, and arrays. - Records can refer to any recognized type. - Derived types (NEW keyword) can refer to any recognized type. SQL allows but ignores range constraints in derived types. SQL does not allow references to types that use discriminants in any way or to access types. SQL does not allow references to integer (RANGE keyword), floating-point (DIGITS keyword), or fixed-point (DELTA keyword) types. o Subtypes Subtypes can refer to any recognized type. SQL allows but ignores range constraints in subtypes. o Assignments from expressions in declarations o Context structure types When you write applications for the Ada precompiler, you should declare a context structure by declaring a variable of data type SQLCONTEXT_REC instead of declaring a structure. When you declare a variable with the data type SQLCONTEXT_REC, the Ada precompiler generates a context structure for you. For example, you declare the variable using the following code: context_struc.sqlcontext_ver := 1; context_struc.sqlcontext_tid.sqlcontext_tid_type := 1 context_struc.sqlcontext_tid.sqlcontext_tid_len := 16; context_struc.sqlcontext_tid.sqlcontext_tid_value(1) := 0; context_struc.sqlcontext_tid.sqlcontext_tid_value(2) := 0; context_struc.sqlcontext_tid.sqlcontext_tid_value(3) := 0; context_struc.sqlcontext_tid.sqlcontext_tid_value(4) := 0; context_struc.sqlcontext_end := 0;