Threads=number Specifies the number of reader threads to be used by the backup process. RMU creates so called internal 'threads' of execution to read data from one specific storage area. Threads run quasi-parallel within the process executing the RMU image. Each thread generates its own I/O load and consumes resources like virtual address space and process quotas (e.g. FILLM, BYTLM). The more threads, the more I/Os can be generated at one point in time and the more resources are needed to accomplish the same task. Performance increases with more threads due to parallel activities which keeps disk drives busier. However, at a certain number of threads, performance suffers because the disk I/O subsystem is saturated and I/O queues build up for the disk drives. Also the extra CPU time for additional thread scheduling overhead reduces the overall performance. Typically 2-5 threads per input disk drive are sufficient to drive the disk I/O susbsystem at its optimum. However, some controllers may be able to handle the I/O load of more threads, for example disk controllers with RAID sets and extra cache memory. In a backup operation, one writer thread is created per output stream. An output stream can be either a tape drive, a disk file or, a media library manager stream. In addition, RMU creates a number of reader threads and their number can be specified. RMU assigns a subset of reader threads to writer threads. RMU calculates the assignment so that roughly the same amount of data is assigned to each output stream. By default, five reader threads are created for each writer thread. If the user has specified the number of threads, then this number is used to create the reader thread pool. RMU always limits the number of reader threads to the number of storage areas. A threads number of 0 causes RMU to create one thread per storage area which start to run all in parallel immediately. Even though this may sound like a good idea to improve performance, this approach suffers performance for databases with a larger number (>10) of storage areas. For a very large number of storage areas (>800), this fails due to hard limitations in system resources like virtual address space. For a backup operation, the smallest threads number you can specify is the number of output streams. This guarantees that each writer thread has at least one reader thread assigned to it and does not produce an empty save set. Using a threads number equal to the number of output streams generates the smallest system load in terms of working set usage and disk I/O load. Disk I/O subsystems most likely can handle higher I/O loads. Using a slightly larger value than the number of output streams (for example, assigning more reader threads to a writer thread) typically results in faster execution time.