HELPLIB.HLB  —  RMU72  Unload  After Journal
    Allows you to extract added, modified, committed, and deleted
    record contents from committed transactions from specified tables
    in one or more after-image journal files.

1  –  Description

    The RMU Unload After_Journal command translates the binary data
    record contents of an after-image journal (.aij) file into an
    output file. Data records for the specified tables for committed
    transactions are extracted to an output stream (file, device,
    or application callback) in the order that the transactions were
    committed.

    Before you use the RMU Unload After_Journal command, you must
    enable the database for LogMiner extraction. Use the RMU Set
    Logminer command to enable the LogMiner for Rdb feature for the
    database. Before you use the RMU Unload After_Journal command
    with the Continuous qualifier, you must enable the database for
    Continuous LogMiner extraction. See Set Logminer help topic for
    more information.

    Data records extracted from the .aij file are those records that
    transactions added, modified, or deleted in base database tables.
    Index nodes, database metadata, segmented strings (BLOB), views,
    COMPUTED BY columns, system relations, and temporary tables
    cannot be unloaded from after-image journal files.

    For each transaction, only the final content of a record
    is extracted. Multiple changes to a single record within a
    transaction are condensed so that only the last revision of the
    record appears in the output stream. You cannot determine which
    columns were changed in a data record directly from the after-
    image journal file. In order to determine which columns were
    changed, you must compare the record in the after-image journal
    file with a previous record.

    The database used to create the after-image journal files being
    extracted must be available during the RMU Unload After_Journal
    command execution. The database is used to obtain metadata
    information (such as table names, column counts, record version,
    and record compression) needed to extract data records from the
    .aij file. The database is read solely to load the metadata
    and is then detached. Database metadata information can also
    be saved and used in a later session. See the Save_MetaData and
    Restore_MetaData qualifiers for more information.

    If you use the Continuous qualifier, the database must be opened
    on the node where the Continuous LogMiner process is running. The
    database is always used and must be available for both metadata
    information and for access to the online after-image journal
    files. The Save_MetaData and Restore_MetaData qualifiers are not
    permitted with the Continuous qualifier.

    When one or more .aij files and the Continuous qualifier are
    both specified on the RMU Unload After_Journal command line,
    it is important that no .aij backup operations occur until the
    Continuous LogMiner process has transitioned to online mode
    (where the active online .aij files are being extracted). If you
    are using automatic .aij backups and wish to use the Continuous
    LogMiner feature, Oracle recommends that you consider disabling
    the automatic backup feature (ABS) and use manual .aij backups
    so that you can explicitly control when .aij backup operations
    occur.

    The after-image journal file or files are processed sequentially.
    All specified tables are extracted in one pass through the
    after-image journal file.

    As each transaction commit record is processed, all modified and
    deleted records for the specified tables are sorted to remove
    duplicates. The modified and deleted records are then written
    to the output streams. Transactions that were rolled back are
    ignored. Data records for tables that are not being extracted are
    ignored. The actual order of output records within a transaction
    is not predictable.

    In the extracted output, records that were modified or added are
    returned as being modified. It is not possible to distinguish
    between inserted and updated records in the output stream.
    Deleted (erased) records are returned as being deleted. A
    transaction that modifies and deletes a record generates only
    a deleted record. A transaction that adds a new record to
    the database and then deletes it within the same transaction
    generates only a deleted record.

    The LogMiner process signals that a row has been deleted by
    placing a D in the RDB$LM_ACTION field. The contents of the
    row at the instant before the delete operation are recorded
    in the user fields of the output record. If a row was modified
    several times within a transaction before being deleted, the
    output record contains only the delete indicator and the results
    of the last modify operation. If a row is inserted and deleted
    in the same transaction, only the delete record appears in the
    output.

    Records from multiple tables can be output to the same or to
    different destination streams. Possible output destination
    streams include the following:

    o  File

    o  OpenVMS Mailbox

    o  OpenVMS Pipe

    o  Direct callback to an application through a run-time activated
       shareable image

    Refer to the Using_LogMiner_for_Rdb help topic for more
    information about using the LogMiner for Rdb feature.

2  –  Format

  (B)0RMU/Unload/After_Journal root-file-spec aij-file-name

  Command Qualifiers                  x Defaults
                                      x
  /Before=date-time                   x None
  /Continuous                         x /NoContinuous
  /Extend_Size=integer                x /Extend_Size=1000
  /Format=options                     x See description
  /Ignore=Old_Version[=table-list]    x /Ignore=Old_Version=all
  /Include=Action=(include-type)      x Include=Action=
                                      x   (NoCommit,Modify,Delete)
  /IO_Buffers=integer                 x /IO_Buffers=2
  /[No]Log                            x Current DCL verify value
  /Options=options-list               x See description
  /Order_AIJ_files                    x /NoOrder_aij_files
  /Output=file-spec                   x /Output=SYS$OUTPUT
  /Parameter=character-strings        x None
  /Quick_Sort_Limit=integer           x /Quick_Sort_Limit=5000
  /Restart=(restart-point)            x None
  /Restore_Metadata=file-spec         x None

  (B)0/Save_Metadata=file-spec            x None
  /Select=selection-type              x /Select=Commit_Transaction
  /Since=date-time                    x None
  /Sort_Workfiles=integer             x /Sort_Workfiles=2
  /Statistics_Interval=integer        x See description
  /[No]Symbols                        x /Symbols
  /Table=(Name=table-name,            x See description
          [table-options ...])        x None
  [No]Trace                           x /Notrace

3  –  Parameters

3.1  –  root-file-spec

    The root file specification of the database for the after-image
    journal file from which tables will be unloaded. The default file
    extension is .rdb.

    The database must be the same actual database that was used to
    create the after-image journal files. The database is required
    so that the table metadata (information about data) is available
    to the RMU Unload After_Journal command. In particular, the names
    and relation identification of valid tables within the database
    are required along with the number of columns in the table and
    the compression information for the table in various storage
    areas.

    The RMU Unload After_Journal process attaches to the database
    briefly at the beginning of the extraction operation in order to
    read the metadata. Once the metadata has been read, the process
    disconnects from the database for the remainder of the operation
    unless the Continuous qualifier is specified. The Continuous
    qualifier indicates that the extraction operation is to run non-
    stop, and the process remains attached to the database.

3.2  –  aij-file-name

    One or more input after-image journal backup files to be used
    as the source of the extraction operation. Multiple journal
    files can be extracted by specifying a comma-separated list
    of file specifications. Oracle RMU supports OpenVMS wildcard
    specifications (using the * and % characters) to extract a
    group of files. A file specification beginning with the at
    (@) character refers to an options file containing a list of
    after-image journal files (rather than the file specification
    of an after-image journal itself). If you use the at character
    syntax, you must enclose the at character and the file name in
    double quotation marks (for example, specify aij-file-name as
    "@files.opt"). The default file extension is .aij.

4  –  Command Qualifiers

4.1  –  Before

    Before=date-time

    Specifies the ending time and date for transactions to be
    extracted. Based on the Select qualifier, transactions that
    committed or started prior to the specified Before date are
    selected. Information changed due to transactions that committed
    or started after the Before date is not included in the output.

4.2  –  Continuous

    Continuous
    Nocontinuous

    Causes the LogMiner process to attach to the database and begin
    extracting records in "near-real" time. When the Continuous
    qualifier is specified, the RMU Unload After_Journal command
    extracts records from the online after-image journal files of the
    database until it is stopped via an external source (for example,
    Ctrl/y, STOP/ID, $FORCEX, or database shutdown).

    A database must be explicitly enabled for the Continuous LogMiner
    feature. To enable the Continuous LogMiner feature, use the RMU
    Set Logminer command with the Enable and Continuous qualifiers;
    to disable use of the Continuous LogMiner feature, use the RMU
    Set Logminer command with the Enable and Nocontinuous qualifiers.

    The output from the Continuous LogMiner process is a continuous
    stream of information. The intended use of the Continuous
    LogMiner feature is to write the changes into an OpenVMS
    mailbox or pipe, or to call a user-supplied callback routine.
    Writing output to a disk file is completely functional with the
    Continuous LogMiner feature, however, no built-in functionality
    exists to prevent the files from growing indefinitely.

    It is important that the callback routine or processing of
    the mailbox be very responsive. If the user-supplied callback
    routine blocks, or if the mailbox is not being read fast enough
    and fills, the RMU Unload After_Journal command will stall. The
    Continuous LogMiner process prevents backing up the after-image
    journal that it is currently extracting along with all subsequent
    journals. If the Continuous LogMiner process is blocked from
    executing for long enough, it is possible that all available
    journals will fill and will not be backed up.

    When a database is enabled for the Continuous LogMiner feature,
    an AIJ "High Water" lock (AIJHWM) is utilized to help coordinate
    and maintain the current .aij end-of-file location. The lock
    value block for the AIJHWM lock contains the location of the
    highest written .aij block. The RMU Unload After_Journal command
    with the Continuous qualifier polls the AIJHWM lock to determine
    if data has been written to the .aij file and to find the highest
    written block. If a database is not enabled for the Continuous
    LogMiner feature, there is no change in locking behavior; the
    AIJHWM lock is not maintained and thus the Continuous qualifier
    of the RMU Unload After_Journal command is not allowed.

    In order to maintain the .aij end-of-file location lock,
    processes that write to the after-image journal file must use
    the lock to serialize writing to the journal. When the Continuous
    LogMiner feature is not enabled, processes instead coordinate
    allocating space in the after-image journal file and can write
    to the file without holding a lock. The Continuous LogMiner
    process requires that the AIJHWM lock be held during the .aij
    I/O operation. In some cases, this can reduce overall throughput
    to the .aij file as it serves to reduce multiple over-lapped I/O
    write operations by multiple processes.

    The Save_Metadata and Restore_Metadata qualifiers are
    incompatible with the Continuous qualifier.

4.3  –  Extend Size

    Extend_size=integer

    Specifies the file allocation and extension quantity for output
    data files. The default extension size is 1000 blocks. Using a
    larger value can help reduce output file fragmentation and can
    improve performance when large amounts of data are extracted.

4.4  –  Format

    Format=options

    If the Format qualifier is not specified, Oracle RMU outputs data
    to a fixed-length binary flat file.

    The format options are:

    o  Format=Binary

       If you specify the Format=Binary option, Oracle RMU does not
       perform any data conversion; data is output in a flat file
       format with all data in the original binary state.

       Output Fields describes the output fields and data types of an
       output record in Binary format.

    Table 19 Output Fields

                                 Byte
    Field Name    Data Type      LengthDescription

    ACTION        CHAR (1)       1     Indicates record state.
                                       "M" indicates an insert or
                                       modify action. "D" indicates a
                                       delete action. "E" indicates
                                       stream end-of-file (EOF)
                                       when a callback routine is
                                       being used. "P" indicates
                                       a value from the command
                                       line Parameter qualifier
                                       when a callback routine is
                                       being used (see Parameter
                                       qualifier). "C" indicates
                                       transaction commit information
                                       when the Include=Action=Commit
                                       qualifier is specified.
    RELATION_     CHAR (31)      31    Table name. Space padded to 31
    NAME                               characters.
    RECORD_TYPE   INTEGER        4     The Oracle Rdb internal
                  (Longword)           relation identifier.
    DATA_LEN      SMALLINT       2     Length, in bytes, of the data
                  (Word)               record content.
    NBV_LEN       SMALLINT       2     Length, in bits, of the null
                  (Word)               bit vector content.
    DBK           BIGINT         8     Records logical database key.
                  (Quadword)           The database key is a 3-field
                                       structure containing a 16-
                                       bit line number, a 32-bit
                                       page number and a 16-bit area
                                       number.
    START_TAD     DATE VMS       8     Date/time of the start of the
                  (Quadword)           transaction.
    COMMIT_TAD    DATE VMS       8     Date/time of the commitment of
                  (Quadword)           the transaction.
    TSN           BIGINT         8     Transaction sequence number of
                  (Quadword)           the transaction that performed
                                       the record operation.
    RECORD_       SMALLINT       2     Record version.
    VERSION       (Word)
    Record Data   Varies               Actual data record field
                                       contents.
    Record NBV    BIT VECTOR           Null bit vector. There is
                  (array of            one bit for each field in the
                  bits)                data record. If a bit value
                                       is 1, the corresponding field
                                       is NULL; if a bit value is
                                       0, the corresponding field
                                       is not NULL and contains an
                                       actual data value. The null
                                       bit vector begins on a byte
                                       boundary. Any extra bits in
                                       the final byte of the vector
                                       after the final null bit are
                                       unused.

    o  Format=Dump

       If you specify the Format=Dump option, Oracle RMU produces an
       output format suitable for viewing. Each line of Dump format
       output contains the column name (including LogMiner prefix
       columns) and up to 200 bytes of the column data. Unprintable
       characters are replaced with periods (.), and numbers and
       dates are converted to text. NULL columns are indicated
       with the string "NULL". This format is intended to assist
       in debugging; the actual output contents and formatting will
       change in the future.

    o  Format=Text

       If you specify the Format=Text option, Oracle RMU converts
       all data to printable text in fixed-length columns before
       unloading it. VARCHAR(n) strings are padded with blanks when
       the specified string has fewer characters than n so that the
       resulting string is n characters long.

    o  Format=(Delimited_Text [,delimiter-options])

       If you specify the Format=Delimited_Text option, Oracle RMU
       applies delimiters to all data before unloading it.

       DATE VMS dates are output in the collatable time format, which
       is yyyymmddhhmmsscc. For example, March 20, 1993 is output as:
       1993032000000000.

       Delimiter options are:

       -  Prefix=string

          Specifies a prefix string that begins any column value in
          the ASCII output file. If you omit this option, the column
          prefix is a quotation mark (").

       -  Separator=string

          Specifies a string that separates column values of a row.
          If you omit this option, the column separator is a single
          comma (,).

       -  Suffix=string

          Specifies a suffix string that ends any column value in
          the ASCII output file. If you omit this option, the column
          suffix is a quotation mark (").

       -  Terminator=string

          Specifies the row terminator that completes all the column
          values corresponding to a row. If you omit this option, the
          row terminator is the end of the line.

       -  Null=string

          Specifies a string that, when found in the database column,
          is unloaded as "NULL" in the output file.

          The Null option can be specified on the command line as any
          one of the following:

          *  A quoted string

          *  An empty set of double quotes ("")

          *  No string

          The string that represents the null character must be
          quoted on the Oracle RMU command line. You cannot specify a
          blank space or spaces as the null character. You cannot use
          the same character for the Null value and other Delimited_
          Text options.

                                      NOTE

          The values for each of the strings specified in the
          delimiter options must be enclosed within quotation
          marks. Oracle RMU strips these quotation marks while
          interpreting the values. If you want to specify a
          quotation mark (") as a delimiter, specify a string
          of four quotation marks. Oracle RMU interprets four
          quotation marks as your request to use one quotation
          mark as a delimiter. For example, Suffix = """".

          Oracle RMU reads these quotation marks as follows:

          o  The first quotation mark is stripped from the string.

          o  The second and third quotation mark are interpreted
             as your request for one quotation mark (") as a
             delimiter.

          o  The fourth quotation mark is stripped.

          This results in one quotation mark being used as a
          delimiter.

          Furthermore, if you want to specify a quotation mark as
          part of the delimited string, you must use two quotation
          marks for each quotation mark that you want to appear in
          the string. For example, Suffix = "**""**" causes Oracle
          RMU to use a delimiter of **"**.

4.5  –  Ignore

    Ignore=Old_Version[=table-list]

    Specifies optional conditions or items to ignore.

    The RMU Unload After_Journal command treats non-current record
    versions in the AIJ file as a fatal error condition. That is,
    attempting to extract a record that has a record version not the
    same as the table's current maximum version results in a fatal
    error.

    There are, however, some very rare cases where a verb rollback
    of a modification of a record may result in an old version of a
    record being written to the after-image journal even though the
    transaction did not actually complete a successful modification
    to the record. The RMU Unload After_Journal command detects the
    old record version and aborts with a fatal error in this unlikely
    case.

    When the Ignore=Old_Version qualifier is present, the RMU Unload
    After_Journal command displays a warning message for each
    record that has a non-current record version and the record
    is not written to the output stream. The Old_Version qualifier
    accepts an optional list of table names to indicate that only the
    specified tables are permitted to have non-current record version
    errors ignored.

4.6  –  Include

    Include=Action=include-type

    Specifies if deleted or modified records or transaction commit
    information is to be extracted from the after-image journal. The
    following keywords can be specified:

    o  Commit
       NoCommit

       If you specify Commit, a transaction commit record is
       written to each output stream as the final record for each
       transaction. The commit information record is written to
       output streams after all other records for the transaction
       have been written. The default is NoCommit.

       Because output streams are created with a default file name
       of the table being extracted, it is important to specify a
       unique file name on each occurrence of the output stream.
       The definition of "unique" is such that when you write to a
       non-file-oriented output device (such as a pipe or mailbox),
       you must be certain to specify a specific file name on each
       output destination. This means that rather than specifying
       Output=MBA1234: for each output stream, you should use
       Output=MBA1234:MBX, or any file name that is the same on all
       occurrences of MBA1234:.

       Failure to use a specific file name can result in additional,
       and unexpected, commit records being returned. However, this
       is generally a restriction only when using a stream-oriented
       output device (as opposed to a disk file).

       The binary record format is based on the standard LogMiner
       output format. However, some fields are not used in the commit
       action record. The binary format and contents of this record
       are shown in Commit Record Contents. This record type is
       written for all output data formats.

    Table 20 Commit Record Contents

                 Length (in
    Field        bytes)       Contents

    ACTION       1            "C"
    RELATION     31           Zero
    RECORD_TYPE  4            Zero
    DATA_LEN     2            Length of RM_TID_LEN, AERCP_LEN, RM_
                              TID, AERCP
    NBV_LEN      2            Zero
    TID          4            Transaction (Attach) ID
    PID          4            Process ID
    START_TAD    8            Transaction Start Time/Date
    COMMIT_TAD   8            Transaction Commit Time/Date
    TSN          8            Transaction ID
    RM_TID_LEN   4            Length of the Global TID
    AERCP_LEN    4            Length of the AERCP information
    RM_TID       RM_TID_LEN   Global TID
    AERCP        AERCP_LEN    Restart Control Information
    RDB$LM_      12           USERNAME
    USERNAME

       When the original transaction took part in a distributed,
       two-phase transaction, the RM_TID component is the Global
       transaction manager (XA or DDTM) unique transaction ID.
       Otherwise, this field contains binary zeroes.

       The AIJ Extract Recovery Control Point (AERCP) information is
       used to uniquely identify this transaction within the scope
       of the database and after-image journal files. It contains
       the .aij sequence number, VBN and TSN of the last "Micro Quiet
       Point", and is used by the Continuous LogMiner process to
       restart a particular point in the journal sequence.

    o  Delete
       NoDelete

       If you specify Delete, pre-deletion record contents are
       extracted from the aij file. If you specify NoDelete, no
       pre-deletion record contents are extracted. The default is
       Delete.

    o  Modify
       NoModify

       If you specify Modify, modified or added record contents are
       extracted from the .aij file. If you specify NoModify, then no
       modified or added record contents are extracted. The default
       is Modify.

4.7  –  IO Buffers

    IO_Buffers=integer

    Specifies the number of I/O buffers used for output data files.
    The default number of buffers is two, which is generally
    adequate. With sufficiently fast I/O subsystem hardware,
    additional buffers may improve performance. However, using a
    larger number of buffers will also consume additional virtual
    memory and process working set.

4.8  –  Log

    Log
    Nolog

    Specifies that the extraction of the .aij file is be reported
    to SYS$OUTPUT or the destination specified with the Output
    qualifier. When activity is logged, the output from the Log
    qualifier provides the number of transactions committed or rolled
    back. The default is the setting of the DCL VERIFY flag, which is
    controlled by the DCL SET VERIFY command.

4.9  –  Options

    Options=options-list

    The following options can be specified:

    o  File=file-spec

       An options file contains a list of tables and output
       destinations. The options file can be used instead of, or
       along with, the Table qualifier to specify the tables to be
       extracted. Each line of the options file must specify a table
       name prefixed with "Table=". After the table name, the output
       destination is specified as either "Output=", or "Callback_
       Module=" and "Callback_Routine=", for example:

       TABLE=tblname,OUTPUT=outfile
       TABLE=tblname,CALLBACK_MODULE=image,CALLBACK_ROUTINE=routine

       You can use the Record_Definition=file-spec option from the
       Table qualifier to create a record definition file for the
       output data. The default file type is .rrd; the default file
       name is the name of the table.

       You can use the Table_Definition=file-spec option from
       the Table qualifier to create a file that contains an SQL
       statement that creates a table to hold transaction data. The
       default file type is .sql; the default file name is the name
       of the table.

       Each option in the Options=File qualifier must be fully
       specified (no abbreviations are allowed) and followed with
       an equal sign (=)  and a value string. The value string must
       be followed by a comma or the end of a line. Continuation
       lines can be specified by using a trailing dash. Comments are
       indicated by using the exclamation point (!)  character.

       You can use the asterisk (*)  and the percent sign (%)
       wildcard characters in the table name specification to select
       all tables that satisfy the components you specify. The
       asterisk matches zero or more characters; the percent sign
       matches a single character.

       For table name specifications that contain wild card
       characters, if the first character of the string is a pound
       sign (#),  the wildcard specification is changed to a "not
       matching" comparison. This allows exclusion of tables based
       on a wildcard specification. The pound sign designation is
       only evaluated when the table name specification contains an
       asterisk or percent sign.

       For example, a table name specification of "#FOO%" indicates
       that all table names that are four characters long and do not
       start with the string "FOO" are to be selected.

    o  Shared_Read

       Specifies that the input after-image journal backup files are
       to be opened with an RMS shared locking specification.

    o  Dump

       Specifies that the contents of an input metadata file are to
       be formatted and displayed. Typically, this information is
       used as a debugging tool.

4.10  –  Order AIJ Files

    Order_AIJ_Files
    NoOrder_AIJ_Files

    By default, after-image journal files are processed in the order
    that they are presented to the RMU Unload After_Journal command.
    The Order_AIJ_Files qualifier specifies that the input after-
    image journal files are to be processed in increasing order by
    sequence number. This can be of benefit when you use wildcard (*
    or %) processing of a number of input files. The .aij files are
    each opened, the first block is read (to determine the sequence
    number), and the files are closed prior to the sorting operation.

4.11  –  Output

    Output=file-spec

    Redirects the log and trace output (selected with the Log and
    Trace qualifiers) to the named file. If this qualifier is not
    specified, the output generated by the Log and Trace qualifiers,
    which can be voluminous, is displayed to SYS$OUTPUT.

4.12  –  Parameter

    Parameter=character-strings

    Specifies one or more character strings that are concatenated
    together and passed to the callback routine upon startup.

    For each table that is associated with a user-supplied callback
    routine, the callback routine is called with two parameters: the
    length of the Parameter record and a pointer to the Parameter
    record. The binary format and contents of this record are shown
    in Parameter Record Contents.

    Table 21 Parameter Record Contents

                 Length (in
    Field        bytes)       Contents

    ACTION       1            "P"
    RELATION     31           Relation name
    RECORD_TYPE  4            Zero
    DATA_LEN     2            Length of parameter string
    NBV_LEN      2            Zero
    LDBK         8            Zero
    START_TAD    8            Zero
    COMMIT_TAD   8            Zero
    TSN          8            Zero
    DATA         ?            Variable length parameter string
                              content

4.13  –  Quick Sort Limit

    Quick_Sort_Limit=integer

    Specifies the maximum number of records that will be sorted with
    the in-memory "quick sort" algorithm.

    The default value is 5000 records. The minimum value that can be
    specified is 10 and the maximum value is 100,000.

    Larger values specified for the /Quick_Sort_Limit qualifier may
    reduce sort work file IO at the expense of additional CPU time
    and/or memory consumption. A value that is too small may result
    in additional disk file IO. In general, the default value should
    be accepted.

4.14  –  Restart

    Restart=restart-point

    Specifies an AIJ Extract Restart Control Point (AERCP) that
    indicates the location to begin the extraction. The AERCP
    indicates the transaction sequence number (TSN) of the last
    extracted transaction along with a location in the .aij file
    where a known "Micro-quiet point" exists.

    When the Restart qualifier is not specified and no input after-
    image journal files are specified on the command line, the
    Continuous LogMiner process starts extracting at the beginning
    of the earliest modified online after-image journal file.

    When formatted for text display, the AERCP structure consists of
    the six fields (the MBZ field is excluded) displayed as unsigned
    integers separated by dashes; for example, "1-28-12-7-3202-3202".

4.15  –  Restore Metadata

    Restore_Metadata=file-spec

    Specifies that the RMU Unload After_Journal command is to read
    database metadata information from the specified file. The
    Database parameter is required but the database itself is not
    accessed when the Restore_Metadata qualifier is specified. The
    default file type is .metadata. The Continuous qualifier is not
    allowed when the Restore_Metadata qualifier is present.

    Because the database is not available when the Restore_Metadata
    qualifier is specified, certain database-specific actions cannot
    be taken. For example, checks for after-image journaling are
    disabled. Because the static copy of the metadata information is
    not updated as database structure and table changes are made, it
    is important to make sure that the metadata file is saved after
    database DML operations.

    When the Restore_Metadata qualifier is specified, additional
    checks are made to ensure that the after-image journal files
    were created using the same database that was used to create the
    metadata file. These checks provide additional security and help
    prevent accidental mismatching of files.

4.16  –  Save Metadata

    Save_Metadata=file-spec

    Specifies that the RMU Unload After_Journal command is to
    write metadata information to the named file. The Continuous,
    Restore_Metadata, Table, and Options=file qualifiers and the
    aij-file-name parameter are not allowed when the Save_Metadata
    qualifier is present. The default file type is .metadata.

4.17  –  Select

    Select=selection-type

    Specifies if the date and time of the Before and Since qualifiers
    refer to transaction start time or transaction commit time.

    The following options can be specified as the selection-type of
    the Select qualifier:

    o  Commit_Transaction

       Specifies that the Before and Since qualifiers select
       transactions based on the time of the transaction commit.

    o  Start_Transaction

       Specifies that the Before and Since qualifiers select
       transactions based on the time of the transaction start.

    The default for date selection is Commit_Transaction.

4.18  –  Since

    Since=date-time

    Specifies the starting time for transactions to be extracted.
    Depending on the value specified in the Select qualifier,
    transactions that committed or started on or after the specified
    Since date are selected. Information from transactions that
    committed or started prior to the specified Since date is not
    included in the output.

4.19  –  Sort Workfiles

    Sort_Workfiles=integer

    Specifies the number of sort work files. The default number
    of sort work files is two. When large transactions are being
    extracted, using additional sort work files may improve
    performance by distributing I/O loads over multiple disk devices.
    Use the SORTWORKn (where n is a number from 0 to 9) logical names
    to specify the location of the sort work files.

4.20  –  Statistics Interval

    Statistics_Interval=integer

    Specifies that statistics are to be displayed at regular
    intervals so that you can evaluate the progress of the unload
    operation.

    The displayed statistics include:

    o  Elapsed time

    o  CPU time

    o  Buffered I/O

    o  Direct I/O

    o  Page faults

    o  Number of records unloaded for a table

    o  Total number of records extracted for all tables

    If the Statistics_Interval qualifier is specified, the default
    interval is 60 seconds. The minimum value is one second. If the
    unload operation completes successfully before the first time
    interval has passed, you will receive an informational message
    on the number of files unloaded. If the unload operation is
    unsuccessful before the first time interval has passed, you will
    receive error messages and statistics on the number of records
    unloaded.

    At any time during the unload operation, you can press Ctrl/T to
    display the current statistics.

4.21  –  Symbols

    Symbols
    Nosymbols

    Specifies whether DCL symbols are to be created, indicating
    information about records extracted for each table.

    If a large enough number of tables is being unloaded, too many
    associated symbols are created, and the CLI symbol table space
    can become exhausted. The error message "LIB-F-INSCLIMEM,
    insufficient CLI memory" is returned in this case. Specify the
    Nosymbols qualifier to prevent creation of the symbols.

    The default is Symbols, which causes the symbols to be created.

4.22  –  Table

    Table=(Name=table-name, table-options)

    Specifies the name of a table to be unloaded and an output
    destination. The table-name must be a table within the database.
    Views, indexes, and system relations may not be unloaded from the
    after-image journal file.

    The asterisk (*)  and the percent sign (%) wildcard characters
    can be used in the table name specification to select all tables
    that satisfy the components you specify. The asterisk matches
    zero or more characters and the percent sign matches a single
    character.

    For table name specifications that contain wild card characters,
    if the first character of the string is a pound sign (#),
    the wildcard specification is changed to a "not matching"
    comparison. This allows exclusion of tables based on a wildcard
    specification. The pound sign designation is only evaluated when
    the table name specification contains an asterisk or percent
    sign.

    For exmple, a table name specification of "#FOO%" indicates that
    all table names that are four characters long and do not start
    with the string "FOO" are to be selected.

    The following table-options can be specified with the Table
    qualifier:

    o  Callback_Module=image-name, Callback_Routine=routine-name

       The LogMiner process uses the OpenVMS library routine
       LIB$FIND_IMAGE_SYMBOL to activate the specified shareable
       image and locate the specified entry point routine name. This
       routine is called with each extracted record. A final call is
       made with the Action field set to "E" to indicate the end of
       the output stream. These options must be specified together.

    o  Control

       Use the Control table option to produce output files that
       can be used by SQL*Loader to load the extracted data into an
       Oracle database. This option must be used in conjunction with
       fixed text format for the data file. The Control table option
       can be specified on either the command line or in an options
       file.

    o  Output=file-spec

       If an Output file specification is present, unloaded records
       are written to the specified location.

    o  Record_Definition=file-spec

       The Record_Definition=file-spec option can be used to create a
       record definition file for the output data. The default file
       type is .rrd; the default file name is the name of the table.

    o  Table_Definition=file-spec

       You can use the Table_Definition=file-spec option to create
       a file that contains an SQL statement that creates a table
       to hold transaction data. The default file type is .sql; the
       default file name is the name of the table.

    Unlike other qualifiers where only the final occurrence of the
    qualifier is used by an application, the Table qualifier can
    be specified multiple times for the RMU Unload After_Journal
    command. Each occurrence of the Table qualifier must specify a
    different table.

4.23  –  Trace

    Trace
    Notrace

    Specifies that the unloading of the .aij file be traced. The
    default is Notrace. When the unload operation is traced, the
    output from the Trace qualifier identifies transactions in the
    .aij file by TSNs and describes what Oracle RMU did with each
    transaction during the unload process. You can specify the Log
    qualifier with the Trace qualifier.

5  –  Usage Notes

    o  To use the RMU Unload After_Journal command for a database,
       you must have the RMU$DUMP privilege in the root file access
       control list (ACL) for the database or the OpenVMS SYSPRV or
       BYPASS privilege.

    o  Oracle Rdb after-image journaling protects the integrity
       of your data by recording all changes made by committed
       transactions to a database in a sequential log or journal
       file. Oracle Corporation recommends that you enable after-
       image journaling to record your database transaction activity
       between full backup operations as part of your database
       restore and recovery strategy. In addition to LogMiner for
       Rdb, the after-image journal file is used to enable several
       database performance enhancements such as the fast commit, row
       cache, and hot standby features.

    o  When the Continuous qualifier is not specified, you can only
       extract changed records from a backup copy of the after-image
       journal files. You create this file using the RMU Backup
       After_Journal command.

       You cannot extract from an .aij file that has been optimized
       with the RMU Optimize After_Journal command.

    o  As part of the extraction process, Oracle RMU sorts extracted
       journal records to remove duplicate record updates. Because
       .aij file extraction uses the OpenVMS Sort/Merge Utility
       (SORT/MERGE) to sort journal records for large transactions,
       you can improve the efficiency of the sort operation by
       changing the number and location of the work files used by
       SORT/MERGE. The number of work files is controlled by the
       Sort_Workfiles qualifier of the RMU Unload After_Journal
       command. The allowed values are 1 through 10 inclusive, with
       a default value of 2. The location of these work files can be
       specified with device specifications, using the SORTWORKn
       logical name (where n is a number from 0 to 9). See the
       OpenVMS documentation set for more information on using
       SORT/MERGE. See the Oracle Rdb7 Guide to Database Performance
       and Tuning for more information on using these Oracle Rdb
       logical names.

    o  When extracting large transactions, the RMU Unload After_
       Journal command may create temporary work files. You can
       redirect the .aij rollforward temporary work files to a
       different disk and directory location than the current default
       directory by assigning a different directory to the RDM$BIND_
       AIJ_WORK_FILE logical name in the LNM$FILE_DEV name table.
       This can help to alleviate I/O bottlenecks that might occur on
       the default disk.

    o  You can specify a search list by defining logicals
       RDM$BIND_AIJ_WORK_FILEn, with each logical pointing to
       a different device or directory. The numbers must start
       with 1 and increase sequentially without any gaps. When an
       AIJ file cannot be created due to a "device full" error,
       Oracle Rdb looks for the next device in the search list
       by translating the next sequential work file logical. If
       RDM$BIND_AIJ_WORK_FILE is defined, it is used first.

    o  The RMU Unload After_Journal command can read either a backed
       up .aij file on disk or a backed up .aij file on tape that is
       in the Old_File format.

    o  You can select one or more tables to be extracted from an
       after-image journal file. All tables specified by the Table
       qualifier and all those specified in the Options file are
       combined to produce a single list of output streams. A
       particular table can be specified only once. Multiple tables
       can be written to the same output destination by specifying
       the exact same output stream specification (that is, by using
       an identical file specification).

    o  At the completion of the unload operation, RMU creates a
       number of DCL symbols that contain information about the
       extraction statistics. For each table extracted, RMU creates
       the following symbols:

       -  RMU$UNLOAD_DELETE_COUNT_tablename

       -  RMU$UNLOAD_MODIFY_COUNT_tablename

       -  RMU$UNLOAD_OUTPUT_tablename

       The tablename component of the symbol is the name of the
       table. When multiple tables are extracted in one operation,
       multiple sets of symbols are created. The value for the
       symbols RMU$UNLOAD_MODIFY_COUNT_tablename and RMU$UNLOAD_
       DELETE_COUNT_tablename is a character string containing
       the number of records returned for modified and deleted
       rows. The RMU$UNLOAD_OUTPUT_tablename symbol is a character
       string indicating the full file specification for the output
       destination, or the shareable image name and routine name when
       the output destination is an application callback routine.

    o  When you use the Callback_Module and Callback_Routine option,
       you must supply a shareable image with a universal symbol or
       entry point for the LogMiner process to be able to call your
       routine. See the OpenVMS documentation discussing the Linker
       utility for more information about creating shareable images.

    o  Your Callback_Routine is called once for each output record.
       The Callback_Routine is passed two parameters:

       -  The length of the output record, by longword value

       -  A pointer to the record buffer

       The record buffer is a data structure of the same fields and
       lengths written to an output destination.

    o  Because the Oracle RMU image is installed as a known image,
       your shareable image must also be a known image. Use the
       OpenVMS Install Utility to make your shareable image known.
       You may wish to establish an exit handler to perform any
       required cleanup processing at the end of the extraction.

    o  Segmented string data (BLOB) cannot be extracted using the
       LogMiner process. Because the segmented string data is
       related to the base table row by means of a database key,
       there is no convenient way to determine what data to extract.
       Additionally, the data type of an extracted column is changed
       from LIST OF BYTE VARYING to BIGINT. This column contains
       the DBKEY of the original BLOB data. Therefore, the contents
       of this column should be considered unreliable. However, the
       field definition itself is extracted as a quadword integer
       representing the database key of the original segmented string
       data. In generated table definition or record definition
       files, a comment is added indicating that the segmented string
       data type is not supported by the LogMiner for Rdb feature.

    o  Records removed from tables using the SQL TRUNCATE TABLE
       statement are not extracted. The SQL TRUNCATE TABLE statement
       does not journal each individual data record being removed
       from the database.

    o  Records removed from tables using the SQL ALTER DATABASE
       command with the DROP STORAGE AREA clause and CASCADE keyword
       are not extracted. Any data deleted by this process is not
       journalled.

    o  Records removed by dropping tables using the SQL DROP TABLE
       statement are not extracted. The SQL DROP TABLE statement does
       not journal each individual data record being removed from the
       database.

    o  When the RDMS$CREATE_LAREA_NOLOGGING logical is defined, DML
       operations are not available for extraction between the time
       the table is created and when the transaction is committed.

    o  Tables that use the vertical record partitioning (VRP) feature
       cannot be extracted using the LogMiner feature. LogMiner
       software currently does not detect these tables. A future
       release of Oracle Rdb will detect and reject access to
       vertically partitioned tables.

    o  In binary format output, VARCHAR fields are not padded with
       spaces in the output file. The VARCHAR data type is extracted
       as a 2-byte count field and a fixed-length data field. The 2-
       byte count field indicates the number of valid characters in
       the fixed-length data field. Any additional contents in the
       data field are unpredictable.

    o  You cannot extract changes to a table when the table
       definition is changed within an after-image journal file.
       Data definition language (DDL) changes to a table are not
       allowed within an .aij file being extracted. All records in an
       .aij file must be the current record version. If you are going
       to perform DDL operations on tables that you wish to extract
       using the LogMiner for Rdb, you should:

       1. Back up your after-image journal files.

       2. Extract the .aij files using the RMU Unload After_Journal
          command.

       3. Make the DDL changes.

    o  Do not use the OpenVMS Alpha High Performance Sort/Merge
       utility (selected by defining the logical name SORTSHR
       to SYS$SHARE:HYPERSORT) when using the LogMiner feature.
       HYPERSORT supports only a subset of the library sort routines
       that LogMiner requires. Make sure that the SORTSHR logical
       name is not defined to HYPERSORT.

    o  The metadata information file used by the RMU Unload After_
       Journal command is in an internal binary format. The contents
       and format are not documented and are not directly accessible
       by other utilities. The content and format of the metadata
       information file is specific to a version of the RMU Unload
       After_Journal utility. As new versions and updates of Oracle
       Rdb are released, you will proably have to re-create the
       metadata information file. The same version of Oracle Rdb must
       be used to both write and read a metadata information file.
       The RMU Unload After_Journal command verifies the format and
       version of the metadata information file and issues an error
       message in the case of a version mismatch.

    o  For debugging purposes, you can format and display the
       contents of a metadata information file by using the
       Options=Dump qualifier with the Restore_Metadata qualifier.
       This dump may be helpful to Oracle Support engineers during
       problem analysis. The contents and format of the metadata
       information file are subject to change.

    o  If you use both the Output and Statistics_Interval qualifiers,
       the output stream used for the log, trace, and statistics
       information is flushed to disk (via the RMS $FLUSH service) at
       each statistics interval. This makes sure that an output file
       of trace and log information is written to disk periodically.

    o  You can specify input backup after-image journal files along
       with the Continuous qualifier from the command line. The
       specified after-image journal backup files are processed in
       an offline mode. Once they have been processed, the RMU Unload
       After_Journal command switches to "online" mode and the active
       online journals are processed.

    o  When no input after-image journal files are specified on the
       command line, the Continuous LogMiner starts extracting at the
       beginning of the earliest modified online after-image journal
       file. The Restart= qualifier can be used to control the first
       transaction to be extracted.

    o  The Continuous LogMiner requires fixed-size circular after-
       image journals.

    o  An after-image journal file cannot be backed up if there
       are any Continuous LogMiner checkpoints in the aij file.
       The Continuous LogMiner moves its checkpoint to the physical
       end-of-file for the online .aij file that it is extracting.

    o  In order to ensure that all records have been written by all
       database users, Continuous LogMiner processes do not switch
       to the next live journal file until it has been written to by
       another process. Live journals SHOULD NOT be backed up while
       the Continuous LogMiner process is processing a list of .aij
       backup files. This is an unsupported activity and could lead
       to the LogMiner losing data.

    o  If backed up after-image journal files are specified on the
       command line and the Continuous qualifier is specified, the
       journal sequence numbers must ascend directly from the backed
       up journal files to the online journal files.

       In order to preserve the after-image journal file sequencing
       as processed by the RMU Unload After_Journal /Continuous
       command, it is important that no after-image journal backup
       operations are attempted between the start of the command and
       when the Continuous LogMiner process reaches the live online
       after-image journals.

    o  You can run multiple Continuous LogMiner processes at one
       time on a database. Each Continuous LogMiner process acts
       independently.

    o  The Continuous LogMiner reads the live after-image journal
       file just behind writers to the journal. This will likely
       increase the I/O load on the disk devices where the journals
       are located. The Continuous LogMiner attempts to minimize
       unneeded journal I/O by checking a "High Water Mark" lock to
       determine if the journal has been written to and where the
       highest written block location is located.

    o  Vertically partitioned tables cannot be extracted.

6  –  Examples

    Example 1

    The following example unloads the EMPLOYEES table from the .aij
    backup file MFP.AIJBCK.

    RMU /UNLOAD /AFTER_JOURNAL MFP.RDB MFP.AIJBCK -
        /TABLE = (NAME = EMPLOYEES, OUTPUT = EMPLOYEES.DAT)

    Example 2

    The following example simultaneously unloads the SALES,
    STOCK, SHIPPING, and ORDERS tables from the .aij backup files
    MFS.AIJBCK_1-JUL-1999 through MFS.AIJBCK_3-JUL-1999. Note that
    the input .aij backup files are processed sequentially in the
    order specified.

    $ RMU /UNLOAD /AFTER_JOURNAL MFS.RDB -
       MFS.AIJBCK_1-JUL-1999, -
       MFS.AIJBCK_2-JUL-1999, -
       MFS.AIJBCK_3-JUL-1999 -
       /TABLE = (NAME = SALES, OUTPUT = SALES.DAT) -
       /TABLE = (NAME = STOCK, OUTPUT = STOCK.DAT) -
       /TABLE = (NAME = SHIPPING, OUTPUT = SHIPPING.DAT) -
       /TABLE = (NAME = ORDER, OUTPUT = ORDER.DAT)

    Example 3

    Use the Before and Since qualifiers to unload data based on a
    time range. The following example extracts changes made to the
    PLANETS table by transactions that committed between 1-SEP-1999
    at 14:30 and 3-SEP-1999 at 16:00.

    $ RMU /UNLOAD /AFTER_JOURNAL MFS.RDB MFS.AIJBCK -
       /TABLE = (NAME = PLANETS, OUTPUT = PLANETS.DAT) -
       /BEFORE = "3-SEP-1999 16:00:00.00" -
       /SINCE = "1-SEP-1999 14:30:00.00"

    Example 4

    The following example simultaneously unloads the SALES and
    STOCK tables from all .aij backup files that match the wildcard
    specification MFS.AIJBCK_1999-07-*. The input .aij backup files
    are processed sequentially in the order returned from the file
    system.

    $ RMU /UNLOAD /AFTER_JOURNAL MFS.RDB -
       MFS.AIJBCK_1999-07-* -
       /TABLE = (NAME = SALES, OUTPUT = SALES.DAT) -
       /TABLE = (NAME = STOCK, OUTPUT = STOCK.DAT)

    Example 5

    The following example unloads the TICKER table from the .aij
    backup files listed in the file called AIJ_BACKUP_FILES.DAT
    (note the double quotation marks surrounding the at (@) character
    and the file specification). The input .aij backup files are
    processed sequentially. The output records are written to the
    mailbox device called MBA127:. A separate program is already
    running on the system, and it reads and processes the data
    written to the mailbox.

    $ RMU /UNLOAD /AFTER_JOURNAL MFS.RDB -
       "@AIJ_BACKUP_FILES.DAT" -
       /TABLE = (NAME = TICKER, OUTPUT = MBA127:)

    Example 6

    You can use the RMU Unload After_Journal command followed by RMU
    Load commands to move transaction data from one database into
    a change table in another database. You must create a record
    definition (.rrd) file for each table being loaded into the
    target database. The record definition files can be created by
    specifying the Record_Definition option on the Table qualifier.

    $ RMU /UNLOAD /AFTER_JOURNAL OLTP.RDB MYAIJ.AIJBCK -
      /TABLE = ( NAME = MYTBL, -
                 OUTPUT = MYTBL.DAT, -
                 RECORD_DEFINITION=MYLOGTBL) -
      /TABLE = ( NAME = SALE, -
                 OUTPUT=SALE.DAT, -
                 RECORD_DEFINITION=SALELOGTBL)

    $ RMU /LOAD WAREHOUSE.RDB MYLOGTBL MYTBL.DAT -
       /RECORD_DEFINITION = FILE = MYLOGTBL.RRD

    $ RMU /LOAD WAREHOUSE.RDB SALELOGTBL SALE.DAT -
       /RECORD_DEFINITION = FILE = SALELOGTBL.RRD

    Example 7

    You can use an RMS file containing the record structure
    definition for the output file as an input file to the RMU Load
    command. The record description uses the CDO record and field
    definition format. This is the same format used by the RMU Load
    and RMU Unload commands when the Record_Definition qualifier is
    used. The default file extension is .rrd.

    The record definitions for the fields that the LogMiner processs
    writes to the output .rrd file are shown in the following table.
    These fields can be manually appended to a record definition file
    for the actual user data fields being unloaded. The file can be
    used to load a transaction table within a database. A transaction
    table is the output that the LogMiner process writes to a table
    consisting of sequential transactions performed in a database.

    DEFINE FIELD RDB$LM_ACTION          DATATYPE IS TEXT SIZE IS 1.
    DEFINE FIELD RDB$LM_RELATION_NAME   DATATYPE IS TEXT SIZE IS 31.
    DEFINE FIELD RDB$LM_RECORD_TYPE     DATATYPE IS SIGNED LONGWORD.
    DEFINE FIELD RDB$LM_DATA_LEN        DATATYPE IS SIGNED WORD.
    DEFINE FIELD RDB$LM_NBV_LEN         DATATYPE IS SIGNED WORD.
    DEFINE FIELD RDB$LM_DBK             DATATYPE IS SIGNED QUADWORD.
    DEFINE FIELD RDB$LM_START_TAD       DATETYPE IS DATE
    DEFINE FIELD RDB$LM_COMMIT_TAD      DATATYPE IS DATE
    DEFINE FIELD RDB$LM_TSN             DATATYPE IS SIGNED QUADWORD.
    DEFINE FIELD RDB$LM_RECORD_VERSION  DATATYPE IS SIGNED WORD.

    Example 8

    Instead of using the Table qualifier, you can use an Options file
    to specify the table or tables to be extracted, as shown in the
    following example.

    $ TYPE TABLES.OPTIONS
    TABLE=MYTBL, OUTPUT=MYTBL.DAT
    TABLE=SALES, OUTPUT=SALES.DAT
    $ RMU /UNLOAD /AFTER_JOURNAL OLTP.RDB MYAIJ.AIJBCK -
       /OPTIONS = FILE = TABLES.OPTIONS

    Example 9

    The following example unloads the EMPLOYEES table from the live
    database and writes all change records to the MBA145 device. A
    separate program is presumed to be reading the mailbox at all
    times and processing the records.

    $ RMU /UNLOAD /AFTER_JOURNAL /CONTINUOUS MFP.RDB -
     /TABLE = (NAME = EMPLOYEES, OUTPUT = MBA145:)

    Example 10

    This example demonstrates unloading three tables (EMPLOYEES,
    SALES, and CUSTOMERS) to a single mailbox. Even though the
    mailbox is not a file-oriented device, the same file name is
    specified for each. This is required because the LogMiner process
    defaults the file name to the table name. If the same file name
    is not explicitly specified for each output stream destination,
    the LogMiner process assigns one mailbox channel for each table.
    When the file name is the same for all tables, the LogMiner
    process detects this and assigns only a single channel for all
    input tables.

    $ DEFINE MBX$ LOADER_MBX:X
    $ RMU /UNLOAD /AFTER_JOURNAL /CONTINUOUS MFP.RDB -
     /TABLE = (NAME = EMPLOYEES, OUTPUT = MBX$:) -
     /TABLE = (NAME = SALES, OUTPUT = MBX$:) -
     /TABLE = (NAME = CUSTOMERS, OUTPUT = MBX$:)

    Example 11

    In order to include transaction commit information, the
    /Include =Action =Commit qualifier is specified in this example.
    Additionally, the EMPLOYEES and SALES tables are extracted to two
    different mailbox devices (ready by separate processes). A commit
    record is written to each mailbox after all changed records for
    each transaction have been extracted.

    $ RMU /UNLOAD /AFTER_JOURNAL /CONTINUOUS MFP.RDB -
     /INCLUDE = ACTION = COMMIT -
     /TABLE = (NAME = EMPLOYEES, OUTPUT = LOADER_EMP_MBX:X) -
     /TABLE = (NAME = SALES, OUTPUT = LOADER_SAL_MBX:X)

    Example 12

    In this example, multiple input backup after-image journal
    files are supplied. The Order_AIJ_Files qualifier specifies
    that the .aij files are to be processed in ascending order of
    .aij sequence number (regardless of file name). Prior to the
    extraction operation, each input file is opened and the .aij Open
    record is read. The .aij files are then opened and extracted, one
    at a time, by ascending .aij sequence number.

    $ RMU /UNLOAD /AFTER_JOURNAL /LOG /ORDER_AIJ_FILES -
     MFP.RDB *.AIJBCK -
     /TABLE = (NAME = C1, OUTPUT=C1.DAT)
    %RMU-I-UNLAIJFL, Unloading table C1 to DGA0:[DB]C1.DAT;1
    %RMU-I-LOGOPNAIJ, opened journal file DGA0:[DB]ABLE.AIJBCK;1
    %RMU-I-AIJRSTSEQ, journal sequence number is "5"
    %RMU-I-LOGOPNAIJ, opened journal file DGA0:[DB]BAKER.AIJBCK;1
    %RMU-I-AIJRSTSEQ, journal sequence number is "4"
    %RMU-I-LOGOPNAIJ, opened journal file DGA0:[DB]CHARLIE.AIJBCK;1
    %RMU-I-AIJRSTSEQ, journal sequence number is "6"
    %RMU-I-LOGOPNAIJ, opened journal file DGA0:[DB]BAKER.AIJBCK;1
    %RMU-I-AIJRSTSEQ, journal sequence number is "4"
    %RMU-I-AIJMODSEQ, next AIJ file sequence number will be 5
    %RMU-I-LOGOPNAIJ, opened journal file DGA0:[DB]ABLE.AIJBCK;1
    %RMU-I-AIJRSTSEQ, journal sequence number is "5"
    %RMU-I-AIJMODSEQ, next AIJ file sequence number will be 6
    %RMU-I-LOGOPNAIJ, opened journal file DGA0:[DB]CHARLIE.AIJBCK;1
    %RMU-I-AIJRSTSEQ, journal sequence number is "6"
    %RMU-I-AIJMODSEQ, next AIJ file sequence number will be 7
    %RMU-I-LOGSUMMARY, total 7 transactions committed
    %RMU-I-LOGSUMMARY, total 0 transactions rolled back
    ---------------------------------------------------------------------
    ELAPSED: 0 00:00:00.15 CPU: 0:00:00.08 BUFIO: 62 DIRIO: 19 FAULTS: 73
    Table "C1" : 3 records written (3 modify, 0 delete)
    Total : 3 records written (3 modify, 0 delete)

    Example 13

    The SQL record definitions for the fields that the LogMiner
    process writes to the output are shown in the following
    example. These fields can be manually appended to the table
    creation command for the actual user data fields being unloaded.
    Alternately, the Table_Definition qualifier can be used with the
    Table qualifier or within an Options file to automatically create
    the SQL definition file. This can be used to create a transaction
    table of changed data.

    SQL> CREATE TABLE MYLOGTABLE (
    cont> RDB$LM_ACTION          CHAR,
    cont> RDB$LM_RELATION_NAME   CHAR (31),
    cont> RDB$LM_RECORD_TYPE     INTEGER,
    cont> RDB$LM_DATA_LEN        SMALLINT,
    cont> RDB$LM_NBV_LEN         SMALLINT,
    cont> RDB$LM_DBK             BIGINT,
    cont> RDB$LM_START_TAD       DATE VMS,
    cont> RDB$LM_COMMIT_TAD      DATE VMS,
    cont> RDB$LM_TSN             BIGINT,
    cont> RDB$LM_RECORD_VERSION  SMALLINT ...);

    Example 14

    The following example is the transaction table record definition
    (.rrd) file for the EMPLOYEES table from the PERSONNEL database:

    DEFINE FIELD RDB$LM_ACTION          DATATYPE IS TEXT SIZE IS 1.
    DEFINE FIELD RDB$LM_RELATION_NAME   DATATYPE IS TEXT SIZE IS 31.
    DEFINE FIELD RDB$LM_RECORD_TYPE     DATATYPE IS SIGNED LONGWORD.
    DEFINE FIELD RDB$LM_DATA_LEN        DATATYPE IS SIGNED WORD.
    DEFINE FIELD RDB$LM_NBV_LEN         DATATYPE IS SIGNED WORD.
    DEFINE FIELD RDB$LM_DBK             DATATYPE IS SIGNED QUADWORD.
    DEFINE FIELD RDB$LM_START_TAD       DATATYPE IS DATE.
    DEFINE FIELD RDB$LM_COMMIT_TAD      DATATYPE IS DATE.
    DEFINE FIELD RDB$LM_TSN             DATATYPE IS SIGNED QUADWORD.
    DEFINE FIELD RDB$LM_RECORD_VERSION  DATATYPE IS SIGNED WORD.

    DEFINE FIELD EMPLOYEE_ID            DATATYPE IS TEXT SIZE IS 5.
    DEFINE FIELD LAST_NAME              DATATYPE IS TEXT SIZE IS 14.
    DEFINE FIELD FIRST_NAME             DATATYPE IS TEXT SIZE IS 10.
    DEFINE FIELD MIDDLE_INITIAL         DATATYPE IS TEXT SIZE IS 1.
    DEFINE FIELD ADDRESS_DATA_1         DATATYPE IS TEXT SIZE IS 25.
    DEFINE FIELD ADDRESS_DATA_2         DATATYPE IS TEXT SIZE IS 20.
    DEFINE FIELD CITY                   DATATYPE IS TEXT SIZE IS 20.
    DEFINE FIELD STATE                  DATATYPE IS TEXT SIZE IS 2.
    DEFINE FIELD POSTAL_CODE            DATATYPE IS TEXT SIZE IS 5.
    DEFINE FIELD SEX                    DATATYPE IS TEXT SIZE IS 1.
    DEFINE FIELD BIRTHDAY               DATATYPE IS DATE.
    DEFINE FIELD STATUS_CODE            DATATYPE IS TEXT SIZE IS 1.

    DEFINE RECORD EMPLOYEES.
       RDB$LM_ACTION .
       RDB$LM_RELATION_NAME .
       RDB$LM_RECORD_TYPE .
       RDB$LM_DATA_LEN .
       RDB$LM_NBV_LEN .
       RDB$LM_DBK .
       RDB$LM_START_TAD .
       RDB$LM_COMMIT_TAD .
       RDB$LM_TSN .
       RDB$LM_RECORD_VERSION .
       EMPLOYEE_ID .
       LAST_NAME .
       FIRST_NAME .
       MIDDLE_INITIAL .
       ADDRESS_DATA_1 .
       ADDRESS_DATA_2 .
       CITY .
       STATE .
       POSTAL_CODE .
       SEX .
       BIRTHDAY .
       STATUS_CODE .
    END EMPLOYEES RECORD.

    Example 15

    The following C source code segment demonstrates the structure
    of a module that can be used as a callback module and routine
    to process employee transaction information from the LogMiner
    process. The routine, Employees_Callback, would be called by the
    LogMiner process for each extracted record. The final time the
    callback routine is called, the RDB$LM_ACTION field will be set
    to "E" to indicate the end of the output stream.

    #include <stdio>
    typedef unsigned char date_type[8];
    typedef unsigned char dbkey_type[8];
    typedef unsigned char tsn_type[8];

    typedef struct {
        unsigned char       rdb$lm_action;
        char                rdb$lm_relation_name[31];
        unsigned int        rdb$lm_record_type;
        unsigned short int  rdb$lm_data_len;
        unsigned short int  rdb$lm_nbv_len;
        dbkey_type          rdb$lm_dbk;
        date_type           rdb$lm_start_tad;
        date_type           rdb$lm_commit_tad;
        tsn_type            rdb$lm_tsn;
        unsigned short int  rdb$lm_record_version;
        char                employee_id[5];
        char                last_name[14];
        char                first_name[10];
        char                middle_initial[1];
        char                address_data_1[25];
        char                address_data_2[20];
        char                city[20];
        char                state[2];
        char                postal_code[5];
        char                sex[1];
        date_type           birthday;
        char                status_code[1];
    } transaction_data;

    void employees_callback (unsigned int data_len, transaction_data
                             data_buf)
    {    .
         .
         .
     return;}

    Use the C compiler (either VAX C or DEC C) to compile this
    module. When linking this module, the symbol EMPLOYEES_CALLBACK
    needs to be externalized in the shareable image. Refer to the
    OpenVMS manual discussing the Linker utility for more information
    about creating shareable images.

    On OpenVMS Alpha systems, you can use a LINK command similar to
    the following:

    $ LINK /SHAREABLE = EXAMPLE.EXE EXAMPLE.OBJ + SYS$INPUT: /OPTIONS
    SYMBOL_VECTOR = (EMPLOYEES_CALLBACK = PROCEDURE)
    <Ctrl/Z>

    On OpenVMS VAX systems, you can use a LINK command similar to the
    following:

    $ LINK /SHAREABLE = EXAMPLE.EXE EXAMPLE.OBJ + SYS$INPUT: /OPTIONS
    UNIVERSAL = EMPLOYEES_CALLBACK
    <Ctrl/Z>

    Example 16

    You can use triggers and a transaction table to construct a
    method to replicate table data from one database to another
    using RMU Unload After_Journal and RMU Load commands. This
    data replication method is based on transactional changes
    to the source table and requires no programming. Instead,
    existing features of Oracle Rdb can be combined to provide this
    functionality.

    For this example, consider a simple customer information table
    called CUST with a unique customer ID value, customer name,
    address, and postal code. Changes to this table are to be
    moved from an OLTP database to a reporting database system on
    a periodic (perhaps nightly) basis.

    First, in the reporting database, a customer table of the same
    structure as the OLTP customer table is created. In this example,
    this table is called RPT_CUST. It contains the same fields as the
    OLTP customer table called CUST.

    SQL> CREATE TABLE RPT_CUST
    cont> CUST_ID               INTEGER,
    cont> CUST_NAME             CHAR (50),
    cont> CUST_ADDRESS          CHAR (50),
    cont> CUST_POSTAL_CODE      INTEGER);

    Next, a temporary table is created in the reporting database for
    the LogMiner-extracted transaction data from the CUST table. This
    temporary table definition specifies ON COMMIT DELETE ROWS so
    that data in the temporary table is deleted from memory at each
    transaction commit. A temporary table is used because there is no
    need to journal changes to the table.

    SQL> CREATE GLOBAL TEMPORARY TABLE RDB_LM_RPT_CUST (
    cont> RDB$LM_RECORD_TYPE    INTEGER,
    cont> RDB$LM_DATA_LEN       SMALLINT,
    cont> RDB$LM_NBV_LEN        SMALLINT,
    cont> RDB$LM_DBK            BIGINT,
    cont> RDB$LM_START_TAD      DATE VMS,
    cont> RDB$LM_COMMIT_TAD     DATE VMS,
    cont> RDB$LM_TSN            BIGINT,
    cont> RDB$LM_RECORD_VERSION SMALLINT,
    cont> CUST_ID               INTEGER,
    cont> CUST_NAME             CHAR (50),
    cont> CUST_ADDRESS          CHAR (50),
    cont> CUST_POSTAL_CODE      INTEGER) ON COMMIT DELETE ROWS;

    For data to be populated in the RPT_CUST table in the reporting
    database, a trigger is created for the RDB_LM_RPT_CUST
    transaction table. This trigger is used to insert, update,
    or delete rows in the RPT_CUST table based on the transaction
    information from the OLTP database for the CUST table. The unique
    CUST_ID field is used to determine if customer records are to be
    modified or added.

    SQL> CREATE TRIGGER RDB_LM_RPT_CUST_TRIG
    cont>  AFTER INSERT ON RDB_LM_RPT_CUST
    cont>
    cont> -- Modify an existing customer record
    cont>
    cont>  WHEN (RDB$LM_ACTION = 'M' AND
    cont>        EXISTS (SELECT RPT_CUST.CUST_ID FROM RPT_CUST
    cont>                WHERE RPT_CUST.CUST_ID =
    cont>                RDB_LM_RPT_CUST.CUST_ID))
    cont>      (UPDATE RPT_CUST SET
    cont>              RPT_CUST.CUST_NAME = RDB_LM_RPT_CUST.CUST_NAME,
    cont>              RPT_CUST.CUST_ADDRESS =
    cont>              RDB_LM_RPT_CUST.CUST_ADDRESS,
    cont>              RPT_CUST.CUST_POSTAL_CODE =
    cont>              RDB_LM_RPT_CUST.CUST_POSTAL_CODE
    cont>       WHERE RPT_CUST.CUST_ID = RDB_LM_RPT_CUST.CUST_ID)
    cont>  FOR EACH ROW
    cont>
    cont> -- Add a new customer record
    cont>
    cont>  WHEN (RDB$LM_ACTION = 'M' AND NOT
    cont>        EXISTS (SELECT RPT_CUST.CUST_ID FROM RPT_CUST
    cont>                WHERE RPT_CUST.CUST_ID =
    cont>                RDB_LM_RPT_CUST.CUST_ID))
    cont>      (INSERT INTO RPT_CUST VALUES
    cont>              (RDB_LM_RPT_CUST.CUST_ID,
    cont>               RDB_LM_RPT_CUST.CUST_NAME,
    cont>               RDB_LM_RPT_CUST.CUST_ADDRESS,
    cont>               RDB_LM_RPT_CUST.CUST_POSTAL_CODE))
    cont>  FOR EACH ROW
    cont>
    cont> -- Delete an existing customer record
    cont>
    cont>  WHEN (RDB$LM_ACTION = 'D')
    cont>      (DELETE FROM RPT_CUST
    cont>       WHERE RPT_CUST.CUST_ID = RDB_LM_RPT_CUST.CUST_ID)
    cont>  FOR EACH ROW;

    Within the trigger, the action to take (for example, to add,
    update, or delete a customer record) is based on the RDB$LM_
    ACTION field (defined as D or M) and the existence of the
    customer record in the reporting database. For modifications,
    if the customer record does not exist, it is added; if it does
    exist, it is updated. For a deletion on the OLTP database, the
    customer record is deleted from the reporting database.

    The RMU Load command is used to read the output from the LogMiner
    process and load the data into the temporary table where each
    insert causes the trigger to execute. The Commit_Every qualifier
    is used to avoid filling memory with the customer records in
    the temporary table because as soon as the trigger executes, the
    record in the temporary table is no longer needed.

    $ RMU /UNLOAD /AFTER_JOURNAL OLTP.RDB OLTP.AIJBCK -
     /TABLE = (NAME = CUST, -
               OUTPUT = CUST.DAT, -
               RECORD_DEFINITION = RDB_LM_RPT_CUST.RRD)

    $ RMU /LOAD REPORT_DATABASE.RDB RDB_LM_RPT_CUST CUST.DAT -
          /RECORD_DEFINITION = FILE = RDB_LM_RPT_CUST.RRD -
          /COMMIT_EVERY = 1000

    Example 17

    The following example shows how to produce a control file that
    can be used by SQL*Loader to load the extracted data into an
    Oracle database.

    $ RMU/UNLOAD/AFTER TEST_DB TEST_DB_AIJ1_BCK -
         /FORMAT=TEXT -
         /TABLE=(NAME=TEST_TBL, -
                 OUTPUT=LOGMINER_TEXT.TXT, -
                 CONTROL=LOGMINER_CONTROL.CTL, -
                 TABLE_DEFINITION=TEST_TBL.SQL)

    This example produces the following control file. The control
    file is specific to a fixed length record text file. NULLs are
    handled by using the NULLIF clause for the column definition that
    references a corresponding null byte filler column. There is a
    null byte filler column for each column in the underlying table
    but not for the LogMiner specific columns at the beginning of
    the record. If a column is NULL, the corresponding RDB$LM_NBn
    filler column is set to 1. VARCHAR columns are padded with blanks
    but the blanks are ignored by default when the file is loaded by
    SQL*Loader. If you wish to preserve the blanks, you can update
    the control file and add the "PRESERVE BLANKS" clause.

    -- Control file for LogMiner transaction data 25-AUG-2000 12:15:50.47
    -- From database table "TEST_DB"
    LOAD DATA
    INFILE 'DISK:[DIRECTORY]LOGMINER_TEXT.TXT;'
    APPEND INTO TABLE 'RDB_LM_TEST_TBL'
    (
    RDB$LM_ACTION                   POSITION(1:1) CHAR,
    RDB$LM_RELATION_NAME            POSITION(2:32) CHAR,
    RDB$LM_RECORD_TYPE              POSITION(33:44) INTEGER EXTERNAL,
    RDB$LM_DATA_LEN                 POSITION(45:50) INTEGER EXTERNAL,
    RDB$LM_NBV_LEN                  POSITION(51:56) INTEGER EXTERNAL,
    RDB$LM_DBK                      POSITION(57:76) INTEGER EXTERNAL,
    RDB$LM_START_TAD                POSITION(77:90) DATE "YYYYMMDDHHMISS",
    RDB$LM_COMMIT_TAD               POSITION(91:104) DATE "YYYYMMDDHHMISS",
    RDB$LM_TSN                      POSITION(105:124) INTEGER EXTERNAL,
    RDB$LM_RECORD_VERSION           POSITION(125:130) INTEGER EXTERNAL,
    TEST_COL                        POSITION(131:150) CHAR NULLIF RDB$LM_NB1 = 1,
    RDB$LM_NB1               FILLER POSITION(151:151) INTEGER EXTERNAL
    )

    Example 17

    The following example creates a metadata file for the database
    MFP. This metadata file can be used as input to a later RMU
    Unload After_Journal command.

    $ RMU /UNLOAD /AFTER_JOURNAL MFP /SAVE_METADATA=MF_MFP.METADATA /LOG
    %RMU-I-LMMFWRTCNT, Wrote 107 objects to metadata file
     "DUA0:[DB]MFMFP.METADATA;1"

    Example 18

    This example uses a previously created metadata information file
    for the database MFP. The database is not accessed during the
    unload operation; the database metadata information is read from
    the file. As the extract operation no longer directly relies on
    the source database, the AIJ and METADATA files can be moved to
    another systems and extracted there.

    $ RMU /UNLOAD /AFTER_JOURNAL /RESTORE_METADATA=MF_MFP.METADATA -
        MFP AIJ_BACKUP1 /TABLE=(NAME=TAB1, OUTPUT=TAB1) /LOG
    %RMU-I-LMMFRDCNT, Read 107 objects from metadata file
     "DUA0:[DB]MF_MFP.METADATA;1"
    %RMU-I-UNLAIJFL, Unloading table TAB1 to DUA0:[DB]TAB1.DAT;1
    %RMU-I-LOGOPNAIJ, opened journal file DUA0:[DB]AIJ_BACKUP1.AIJ;1
    %RMU-I-AIJRSTSEQ, journal sequence number is "7216321"
    %RMU-I-AIJMODSEQ, next AIJ file sequence number will be 7216322
    %RMU-I-LOGSUMMARY, total 2 transactions committed
    %RMU-I-LOGSUMMARY, total 0 transactions rolled back
    ----------------------------------------------------------------------
     ELAPSED:  0 00:00:00.15 CPU: 0:00:00.01 BUFIO: 11 DIRIO: 5 FAULTS: 28
    Table "TAB1" : 1 record written (1 modify, 0 delete)
    Total : 1 record written (1 modify, 0 delete)
Close Help